Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 430, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33462228

RESUMO

Clinical successes demonstrated by chimeric antigen receptor T-cell immunotherapy have facilitated further development of T-cell immunotherapy against wide variety of diseases. One approach is the development of "off-the-shelf" T-cell sources. Technologies to generate T-cells from pluripotent stem cells (PSCs) may offer platforms to produce "off-the-shelf" and synthetic allogeneic T-cells. However, low differentiation efficiency and poor scalability of current methods may compromise their utilities. Here we show improved differentiation efficiency of T-cells from induced PSCs (iPSCs) derived from an antigen-specific cytotoxic T-cell clone, or from T-cell receptor (TCR)-transduced iPSCs, as starting materials. We additionally describe feeder-free differentiation culture systems that span from iPSC maintenance to T-cell proliferation phases, enabling large-scale regenerated T-cell production. Moreover, simultaneous addition of SDF1α and a p38 inhibitor during T-cell differentiation enhances T-cell commitment. The regenerated T-cells show TCR-dependent functions in vitro and are capable of in vivo anti-tumor activity. This system provides a platform to generate a large number of regenerated T-cells for clinical application and investigate human T-cell differentiation and biology.


Assuntos
Técnicas de Cultura de Células/métodos , Imunoterapia Adotiva/métodos , Células-Tronco Pluripotentes Induzidas/fisiologia , Neoplasias/terapia , Linfócitos T Citotóxicos/transplante , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Quimiocina CXCL12/metabolismo , Meios de Cultura/metabolismo , Meios de Cultura/farmacologia , Feminino , Humanos , Imidazóis/farmacologia , Camundongos , Neoplasias/imunologia , Piridinas/farmacologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T Citotóxicos/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Biomed Res ; 34(6): 309-19, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24389407

RESUMO

Pirfenidone (PFD) is a novel anti-fibrotic agent that targets TGFß. However, the mechanisms underlying its renoprotective properties in hypertension-induced renal injury are poorly understood. We investigated the renoprotective properties of PFD and clarified its renoprotective mechanisms in a rat hypertension-induced renal injury model. Dahl salt-sensitive rats were fed a high-salt diet with or without 1% PFD for 6 weeks. During the administration period, we examined the effects of PFD on blood pressure and renal function. After the administration, the protein levels of renal TGFß, Smad2/3, TNFα, MMP9, TIMP1, and catalase were examined. In addition, total serum antioxidant activity was measured. Compared to untreated rats, PFD treatment significantly attenuated blood pressure and proteinuria. Histological study showed that PFD treatment improved renal fibrosis. PFD may exert its anti-fibrotic effects via the downregulation of TGFß-Smad2/3 signaling, improvement of MMP9/TIMP1 balance, and suppression of fibroblast proliferation. PFD treatment also increased catalase expression and total serum antioxidant activity. In contrast, PFD treatment did not affect the expression of TNFα protein, macrophage or T-cell infiltration, or plasma interleukin 1ß levels. PFD prevents renal injury via its anti-fibrotic and anti-oxidative stress mechanisms. Clarifying the renoprotective mechanisms of PFD will help improve treatment for chronic renal diseases.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Hipertensão Renal/tratamento farmacológico , Rim/patologia , Proteinúria/tratamento farmacológico , Piridonas/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Catalase/genética , Catalase/metabolismo , Fibrose , Regulação da Expressão Gênica , Hipertensão Renal/etiologia , Hipertensão Renal/metabolismo , Hipertensão Renal/patologia , Masculino , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Estresse Oxidativo , Proteinúria/etiologia , Proteinúria/metabolismo , Proteinúria/patologia , Ratos , Ratos Endogâmicos Dahl , Transdução de Sinais , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína Smad3/genética , Proteína Smad3/metabolismo , Cloreto de Sódio na Dieta/efeitos adversos , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
3.
Dev Dyn ; 241(2): 284-93, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22184055

RESUMO

BACKGROUND: The cardiac progenitor cells for the outflow tract (OFT) reside in the visceral mesoderm and mesodermal core of the pharyngeal region, which are defined as the secondary and anterior heart fields (SHF and AHF), respectively. RESULTS: Using chick embryos, we injected fluorescent-dye into the SHF or AHF at stage 14, and the destinations of the labeled cells were examined at stage 31. Labeled cells from the right SHF were found in the myocardium on the left dorsal side of the OFT, and cells from the left SHF were detected on the right ventral side of the OFT. Labeled cells from the right and left AHF migrated to regions of the ventral wall of the OFT close to the aortic and pulmonary valves, respectively. CONCLUSION: These observations indicate that myocardial progenitors from the SHF and AHF contribute to distinct conotruncal regions and that cells from the SHF migrate rotationally while cells from the AHF migrate in a non-rotational manner.


Assuntos
Movimento Celular , Mioblastos Cardíacos/fisiologia , Miocárdio , Faringe/embriologia , Animais , Embrião de Galinha , Cardiopatias Congênitas/embriologia , Faringe/citologia
4.
Dev Growth Differ ; 53(3): 366-77, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21492150

RESUMO

During axis formation in amniotes, posterior and lateral epiblast cells in the area pellucida undergo a counter-rotating movement along the midline to form primitive streak (Polonaise movements). Using chick blastoderms, we investigated the signaling involved in this cellular movement in epithelial-epiblast. In cultured posterior blastoderm explants from stage X to XI embryos, either Lefty1 or Cerberus-S inhibited initial migration of the explants on chamber slides. In vivo analysis showed that inhibition of Nodal signaling by Lefty1 affected the movement of DiI-marked epiblast cells prior to the formation of primitive streak. In Lefty1-treated embryos without a primitive streak, Brachyury expression showed a patchy distribution. However, SU5402 did not affect the movement of DiI-marked epiblast cells. Multi-cellular rosette, which is thought to be involved in epithelial morphogenesis, was found predominantly in the posterior half of the epiblast, and Lefty1 inhibited the formation of rosettes. Three-dimensional reconstruction showed two types of rosette, one with a protruding cell, the other with a ventral hollow. Our results suggest that Nodal signaling may have a pivotal role in the morphogenetic movements of epithelial epiblast including Polonaise movements and formation of multi-cellular rosette.


Assuntos
Blastoderma/metabolismo , Movimento Celular/fisiologia , Galinhas , Morfogênese/fisiologia , Proteína Nodal/metabolismo , Transdução de Sinais/fisiologia , Animais , Blastoderma/citologia , Movimento Celular/efeitos dos fármacos , Embrião de Galinha , Epitélio/embriologia , Proteínas Fetais/metabolismo , Fatores de Determinação Direita-Esquerda/metabolismo , Morfogênese/efeitos dos fármacos , Pirróis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteínas com Domínio T/metabolismo
5.
Anat Sci Int ; 84(3): 67-76, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19259768

RESUMO

During heart development at the pregastrula stage, prospective heart cells reside in the posterior lateral region of the epiblast layer. Interaction of tissues between the posterior epiblast and hypoblast is necessary to generate the future heart mesoderm. Signaling regulating the interaction involves fibroblast growth factor (FGF)-8, Nodal, bone morphogenetic protein (BMP)-antagonist, and canonical Wnt and acts on the posterior epiblast to induce the expression of genes specific for the anterior lateral mesoderm. At the early gastrula stage, prospective heart cells accumulate at the posterior midline and migrate to the anterior region of the primitive streak. During gastrulation, future heart cells leave the primitive streak and migrate anterolaterally to form the left and right anterior lateral plate mesoderm including the precardiac mesoderm. At this stage, prospective heart cells receive endoderm-derived signals, including BMP, FGF, and Wnt-antagonist, and thereby become committed to the heart lineage. At the neurula stage, the left and right precardiac mesoderm move to the ventral midline and fuse, resulting in the formation of a single primitive heart tube. Therefore, a two-step signaling cascade, which includes tissue interaction between epiblast and hypoblast at the blastula stage and endoderm-derived signals during gastrulation, is required to generate a beating heart.


Assuntos
Coração/embriologia , Animais , Blástula/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Desenvolvimento Embrionário , Fator 8 de Crescimento de Fibroblasto/metabolismo , Mesoderma/embriologia , MicroRNAs/metabolismo , Miocárdio/metabolismo , Transdução de Sinais , Proteínas Wnt/metabolismo
6.
Anat Sci Educ ; 2(2): 78-80, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19215062

RESUMO

A simple dissection guide for the conduction system of the human heart is shown. The atrioventricular (AV) node, AV bundle, and right bundle branch were identified in a formaldehyde-fixed human heart. The sinu-atrial (SA) node could not be found, but the region in which SA node was contained was identified using the SA nodal artery. Gross anatomical observation of the conduction system is useful for understanding the structure and function of the heart.


Assuntos
Anatomia/educação , Dissecação/métodos , Sistema de Condução Cardíaco/anatomia & histologia , Nó Atrioventricular/anatomia & histologia , Fascículo Atrioventricular/anatomia & histologia , Fixadores , Formaldeído , Humanos , Nó Sinoatrial/anatomia & histologia , Fixação de Tecidos
7.
Dev Growth Differ ; 50(3): 143-57, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18312428

RESUMO

During heart development at the gastrula stage, inhibition of bone morphogenetic protein (BMP) activity affects the heart specification but does not impair the expression of smooth muscle alpha-actin (SMA), which is first expressed in the heart mesoderm and recruited into initial heart myofibrils. Interaction of tissues between posterior epiblast and hypoblast at the early blastula stage is necessary to induce the expression of SMA, in which Nodal and Chordin are thought to be involved. Here we investigated the role of fibroblast growth factor-8 (FGF8) in the expression of SMA. In situ hybridization and reverse transcription-polymerase chain reaction showed that Fgf8b is expressed predominantly in the nascent hypoblast. Anti-FGF8b antibody inhibited the expression of SMA, cTNT, and Tbx5, which are BMP-independent heart mesoderm/early cardiomyocyte genes, but not Brachyury in cultured posterior blastoderm, and combined FGF8b and Nodal, but neither factor alone induced the expression of SMA in association with heart specific markers in cultured epiblast. Although FGF8b did not induce the upregulation of phospho-Smad2, anti-FGF8b properties suppressed phospho-Smad2 in cultured blastoderm. FGF8b was able to reverse the BMP-induced inhibition of cardiomyogenesis. The results suggest that FGF8b acts on the epiblast synergistically with Nodal at the pregastrula stage and may play a role in the expression of SMA during early cardiogenesis.


Assuntos
Actinas/biossíntese , Fator 8 de Crescimento de Fibroblasto/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Camadas Germinativas/metabolismo , Coração/embriologia , Actinas/genética , Animais , Biomarcadores , Embrião de Galinha , Proteínas Fetais/biossíntese , Proteínas Fetais/genética , Fator 8 de Crescimento de Fibroblasto/biossíntese , Fator 8 de Crescimento de Fibroblasto/genética , Glicoproteínas/biossíntese , Glicoproteínas/genética , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Peptídeos e Proteínas de Sinalização Intercelular/genética , Mesoderma/metabolismo , Proteína Nodal , Técnicas de Cultura de Órgãos , Inibidores de Proteínas Quinases/farmacologia , Pirróis/farmacologia , Proteína Smad2/biossíntese , Proteína Smad2/genética , Proteínas com Domínio T/biossíntese , Proteínas com Domínio T/genética , Fator de Crescimento Transformador beta/fisiologia , Troponina T/biossíntese , Troponina T/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...